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Abstract

Purpose – To investigate the forced convection heat transfer to hydrodynamically and thermally
fully developed laminar steady flow of power-law non-Newtonian fluid in a partially porous square
duct.

Design/methodology/approach – The modified Brinkmann-Forchheimer extended Darcy model
for power-law fluids is used in the porous layer. The solutions for the velocity and temperature fields
are obtained numerically using the finite volume method. Computations are performed over a range of
Darcy number, power-law indices, porous insert thickness and thermal conductivity ratio.

Findings – The average Nusselt number and the Fanning factor, so obtained are found to be in good
agreement with the literature. It is highlighted that a heat transfer improvement is obtained when the
channel is entirely porous and this enhancement is maximized at low permeability. While depending
on the working conditions, heat transfer enhancement can also be obtained by filling partially the duct
with the porous insert, even if the conductivity ratio is equal to 1. The results indicate also that the
conductivity ratio has a strong impact on the heat transfer enhancement at high permeability, while
this impact is significant beyond a critical thickness of the porous layer at low permeability. It is found
that both shear-thinning (n , 1) and shear-thickening (n . 1) fluids allow obtaining the highest
Nusselt number according to the properties of the porous insert. The presence of the porous insert
causes a significant increase in pressure drop. This added pressure drop is found to be more important
with shear thickening fluids (n . 1).

Research limitations/implications – The results of this paper are valid for square ducts and
H1 thermal boundary condition, corresponding to an axially uniform heat flux and peripherally
uniform temperature. The inertial effects are neglected in the porous region.

Practical implications – The obtained results can be used in the design of heat exchangers and
in the cooling of electronic equipments.

Originality/value – This work investigates some interesting ways to enhance heat transfer in
three-dimensional square ducts by using porous substrates and non-Newtonian fluids. It is believed
that the case studied in this paper has not previously been investigated.
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Nomenclature
a ¼ height of the rectangular duct
A ¼ constant defined in equation (12)
b ¼ width of the rectangular duct
c ¼ specific heat
C ¼ inertial factor

Ct ¼ turtuosity factor
Da ¼ modified Darcy number
Dh ¼ hydraulic diameter
e ¼ dimensionless porous layer

thickness
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f ¼ Fanning factor
h ¼ peripherally averaged heat

transfer coefficient
k ¼ thermal conductivity
K ¼ permeability
K * ¼ modified permeability
n ¼ power-law index
n0 ¼ modified power-law index
Nu ¼ peripherally averaged Nusselt

number
Rk ¼ conductivity ratio
p ¼ pressure
P ¼ dimensionless pressure
r ¼ aspect ratio of the duct ( ¼ a/b)
Re ¼ Reynolds number
T ¼ temperature
Tm ¼ bulk temperature
Tw ¼ wall temperature
u ¼ axial velocity

U ¼ dimensionless axial velocity
um ¼ mean velocity
Um ¼ dimensionless mean axial velocity
x, y, z ¼ coordinate system
X, Y, Y ¼ dimensionless coordinate system

Greek
a ¼ thermal diffusivity
1 ¼ porosity
G ¼ dimensionless viscosity
u ¼ dimensionless temperature
um ¼ dimensionless bulk temperature
l ¼ binary variable
m * ¼ consistency factor
r ¼ thermal diffusivity porosity

Subscripts
e ¼ effective
f ¼ fluid

Introduction
During the last few years, an increasing interest has been devoted to fundamental
studies of forced convection in channels or ducts fully or partially filled with a porous
material. This is due to the wide applications of porous media in numerous engineering
fields such as ceramic processing, filtration, geothermal systems, enhanced oil
recovery, compact heat exchangers, and packed bed chemical reactors, etc. In the
majority of these studies, the considered fluid is Newtonian. However, in industrial
applications the fluid drifts away from the Newtonian behavior. For this reason, the
number of studies referring to non-Newtonian fluids is in increase in order to take into
account the rheological aspect.

It has been showed that the insertion of porous matters can enhance significantly
the heat transfer. Huang and Vafai (1994a, b) presented an innovative approach in
altering and controlling the heat transfer and frictional characteristics of an external
surface. They considered an external surface on which porous cavities and porous
blocks were mounted alternately. In the second, only intermittently porous cavities
were used with the same flow configuration. The solutions of the problems were
obtained numerically using a finite difference method. It was shown that depending on
the physical conditions heat transfer enhancement can be obtained with lower
pumping requirements. The results reported by the authors can be extended to various
industrial applications such as chipset electronic cooling and heat exchanger design.
Hadim (1994) numerically analyzed laminar forced convection in fully and partially
porous parallel plate channels with discrete heat sources. It was found that when the
width of the heat source and the spacing between the porous inserts are of the same
order of magnitude as the channel height, the heat transfer enhancement is almost
the same as in the fully porous channel while the pressure drop is significantly lower.
Huang and Vafai (1994c) showed that a significant heat transfer increase could be
obtained by adding porous blocks on the bottom wall of an isothermal parallel plates
channel using a vorticity stream function formulation. Sung et al. (1995) studied
numerically the effects of the height and the permeability of the porous matrix on the
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flow and heat transfer characteristics of forced convection in a partially porous
channel. Chiem and Zhao (2004) have analyzed numerically the same problem reported
by Huang and Vafai (1994c). The steady and unsteady cases were considered in their
study. The situation where the porous insert is in the flow channel was studied by
Tong et al. (1993). They showed that heat transfer could be increased. Moreover, either
the partially or completely porous channel according to the choice of the physical
conditions specific to each configuration, allows obtaining a maximum heat transfer.
Chikh et al. (1995a) derived an analytical solution of non-Darcian forced convection in a
partially annular porous duct. The fully developed case was considered, and the porous
insert was positioned at the inner cylinder. The results obtained show that there exists
a critical thickness of the porous layer at which heat transfer is minimum. In a similar
configuration, the inertial effects on the flow and heat transfer were investigated by
Chikh et al. (1995b). Both constant wall heat flux and constant wall temperature
boundary conditions at the inner cylinder were investigated.

It is well known that some fluids encountered in various industrial applications do
not adhere to the Newtonian model. Ai and Vafai (2005) numerically analyzed the effects
of the rheological behavior of non-Newtonian fluids on the Stokes second problem. For
this purpose eight models of non-Newtonian fluids were considered. For the power law
model, two correlations, which give the velocity and the time required to reach the steady
periodic flow, were established. Moreover, to simulate the blood behavior at unsteady
state, three non-Newtonian models were adopted. It was shown that the field of the
velocity and the wall shear stress is consistent across all models; however the reference
shear rate and the used model affect the magnitude significantly. In the majority of
the studies devoted to non-Newtonian fluids, external flows were the most analyzed in
presence of a porous material. Among them are the studies of Nakayama and Shenoy
(1992), Gorla and Kumari (1998) and Pop and Nakayama (1994). Chen and Hadim (1998)
numerically studied laminar forced convection in a packed bed saturated with a
power-law fluid. Their results indicated that shear thinning fluid provide a higher heat
transfer and a lower pressure drop than Newtonian fluids in porous media.

The above literature review revealed that most of the undertaken works were
devoted to two-dimensional configurations. Three-dimensional studies of forced
convection are rather limited, although in numerous engineering applications,
three-dimensional effects cannot be neglected. Kuzai et al. (1991) experimentally
investigated the heat transfer enhancement in a metal-wool-filled square duct; they
considered high Reynolds number in low permeability fibrous media. Hwang and Wu
(1995) reported on drag and heat transfer measurements and numerical analysis for a
square packed-sphere channel, the model used did not take into account the effects of
variable porosity. Recently, Chen and Hadim (1999) performed a numerical
investigation of three-dimensional non-Darcy forced convection in a square porous
duct. They took into account the thermal dispersion and the variation of the porosity
near the duct walls. In their results, reported for three different thermal boundary
conditions, it was shown that the channeling phenomenon and the thermal dispersion
effects were reduced considerably in a three-dimensional duct compared with
previously reported results for a two-dimensional channel. The use of a non-Newtonian
fluid for heat transfer improvement in rectangular ducts was proposed by numerous
authors as reviewed by Hartnett and Kostic (1989). However, in these investigations,
the ducts were not filled with a porous medium. The literature survey has revealed that
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a partially porous channel is a more attractive heat transfer enhancement technique
because of its reduced pressure drop. It was also shown that with the correct choice of
the governing parameters, a significant heat transfer improvement could be obtained.
It appears that this technique was not extended to rectangular ducts especially when
the working fluid is non-Newtonian.

In the present work, a numerical investigation of steady laminar forced convection
flow in a three dimensional square duct partially or completely filled with a porous
medium and saturated with a power-law fluid was performed. Heat transfer and
hydrodynamic results were reported for the configuration in which the channel walls
were subjected to H1 thermal boundary condition. Parametric studies were conducted
to examine the effects of the Darcy number, the power law index, and the thickness of
the porous material on the heat transfer as well as on the flow field in the duct.

Mathematical formulation
The duct configuration and coordinates system are depicted in Figure 1. It is assumed
that the flow in the duct is steady, incompressible, hydrodynamically and thermally
developed. The flow in the porous medium is modeled using a modified
Brinkman-Forchheimer-extended Darcy model for power-law fluids reported by
Shenoy (1994), which takes into account boundary and inertia effects. The porous
medium is considered to be isotropic homogeneous, saturated with a non-Newtonian
fluid, which obeys to the power-law model, and the local thermal equilibrium is
assumed to prevail between the fluid and the solid matrix. The thermophysical
properties of the solid matrix and the fluid are considered to be constant except for the
viscosity of the power-law fluid, which is a function of the shear rate while the viscous
dissipation is neglected. Thus, the flow is unidirectional and it is expressed in terms of
the axial velocity u, which does not depend on the axial position x.

The equations of continuity, momentum and energy that govern the fluid flow and
heat transfer in the present study are as follows:

Continuity:
›u

›x
¼ 0 ð1Þ

Figure 1.
Physical configuration

and coordinates system
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In the porous region:

1

1n

›

›y
h
›u

›y

� �
þ

›

›z
h
›u

›z

� �� �
2

›p

›x
2

m*

K*
juj

ðn21Þ
2

rCffiffiffiffi
K

p juj

� �
u ¼ 0 ð2Þ

In the fluid region:

›

›y
h
›u

›y

� �
þ

›

›z
h
›u

›z

� �� �
2

›p

›x
¼ 0 ð3Þ

Energy
In the porous region:

u
›T

›x
¼

ke

rf cf

›2T

›y 2
þ

›2T

›z2

� �
ð4Þ

In the fluid region:

u
›T

›x
¼

kf 2

rf cf

›2T

›y 2
þ

›2T

›z2

� �
ð5Þ

In the above equations, y and z are the transversal coordinates, x is the axial coordinate,
u is the velocity component in the axial direction, ›p/›x represents the axial pressure
gradient that is constant under the assumed conditions, T is the temperature, and h is
the viscosity. For a power-law fluid, the expression for the viscosity is given by

h ¼ m*
›u

›y

� �2

þ
›u

›z

� �2
( )ðn21Þ=2

ð6Þ

with m* being the consistency factor and n the power-law index.
In the momentum equation, K* denotes the modified permeability (Shenoy, 1994)

that depends on the structure of the porous medium and the power-law index of the
fluid and is given by

K* ¼
1

2 · Ct

n1

3nþ 1

� �n 50K

31

� �ðnþ1Þ=2

ð7Þ

whereK and 1 are, respectively, the intrinsic permeability and the porosity of the porous
medium. The turtuosity factor Ct is defined in many different ways in the literature. In
this study, the expression given by Dharmadhikari and Kale (1985) is adopted:

Ct ¼
2

3

8n0

9n0 þ 3

� �n0
10n0 2 3

6n0 þ 1

� �
75

16

� �3ð10n023Þ=ð10n0þ11Þ

ð8Þ

and:

n0 ¼ nþ 0:3ð1 2 nÞ ð9Þ

As a result of the hydrodynamically and thermally fully developed flow, the term ›T/›z
in the energy equation can be expressed as:
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›T

›x
¼

dTm

dx
ð10Þ

The boundary conditions for the present configuration are such that a no-slip condition
occurs at the impermeable walls that are considered to be subject to the H1 thermal
boundary condition. The governing equations are put in dimensionless form by
adopting the following non-dimensional variables:

X ¼
x

Dh

; Y ¼
y

Dh

U ¼
u

um
; P ¼

p

ru2
m

; u ¼
af ðT 2 TwÞ

umD
2
h

dTm

dx

Introducing a binary variable allows using a single set of governing equations for both
the fluid and porous regions. With this formulation, the interface matching conditions
are satisfactorily dealt with as shown by Patankar (1980); thus, the numerical solution
procedure is greatly simplified. Consequently, the equations are rewritten as follows:

Continuity:

›U

›X
¼ 0 ð11Þ

Momentum:
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2f Re2 l
jU j
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ð12Þ

with:

x ¼ l
1

1n
2 1

� �
þ 1

� �

Energy:

ðlðRk 2 1Þ þ 1Þ
›2u

›Y 2
þ

›2u

›Z 2

� �
2

r þ 1

2r

� �2
U
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¼ 0 ð13Þ

In the above equations, Da and Re are, respectively, the modified Darcy and the
generalized Reynolds numbers.

Re ¼
ru22n

m Dn
h

m*
ð14Þ

Da ¼
ðK

*
Þ2=ðnþ1Þ

D2
h

ð15Þ
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Since the geometry considered in this work has two symmetry planes, the governing
equations are solved only in one quarter of the physical field to reduce the
computations cost.

Then, the relevant dimensionless boundary conditions are:
On the duct walls:

U ¼ 0; u ¼ 0 ð16aÞ

And on the symmetry planes X ¼ 0.5 and Y ¼ 0.5:

›U

›Y
¼ 0;

›u

›Z
¼ 0 ð16bÞ

›U

›Z
¼ 0;

›u

›Z
¼ 0 ð16cÞ

An additional constraint, which is used to deduce the axial pressure gradient, is that
global mass conservation had to be satisfied. This constraint is expressed as:

Um ¼ 1 ð17Þ

The local dimensionless pressure f Re drop in the momentum equation is calculated in
terms of the Fanning factor, which is defined as:

f ¼
2›p

›x

� 	
Dh

2ru2
m

ð18Þ

and the Nusselt number is defined as:

Nu ¼
hDh

kf
ð19Þ

Where kf is the thermal conductivity of the fluid and h the peripherally averaged heat
transfer coefficient, which is given by:

h ¼
kf umðDh=4Þ

af ðTw 2 TmÞ

dTm

dx
ð20Þ

Accordingly, the expression for the peripherally averaged Nusselt number is
reduced to:

Nu ¼ 2
1

4um
ð21Þ

Numerical procedure
The forgoing equations together with the given boundary conditions are solved
numerically using the control volume formulation outlined by Patankar (1980), which
ensure conservation of momentum and energy over each control volume, and, thus
across the fluid/porous insert interface as well. The sudden change in the diffusion
coefficients, at the fluid/porous insert interface, is handled by use of the harmonic mean
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to ensure conservation and uniqueness of mass and heat fluxes. The nonlinear terms in
the momentum equation arising from the non-Newtonian fluid and the presence of the
porous material are treated as source terms and linearized as described by Patankar
(1980).

The algebraic equations are solved using the Gauss-Seidel method. First, the
velocity field is determined since it is independent of the temperature field, thus
the velocity values so obtained are used to solve for temperature field. The convergence
of computations is assumed to be obtained when the error on the mean velocity is
satisfied to three significant digits and when the absolute value of the relative error for
the velocity and the temperature at each grid point is found to be less than 1025.

Necessary mesh size required to reach a sufficient accuracy is found by trial and
errors. It is established that a uniform 50 by 50 grid yielded results less than 1 percent
from those obtained using a 60 by 60 uniform grid.

The accuracy and validity of the numerical model is verified by comparing
results from the present work, for limit cases, with corresponding results reported in
the literature. As it is shown in Table I, results of dimensionless pressure drop ( f Re)
are compared with those given by the correlation reported by Hartnett and Kostic
(1989):

f Re ¼
7:4942 1:733

n
þ 5:8606

� 	n
4

ð22Þ

The numerical predictions of the peripherally averaged Nusselt number for the case of
forced convection in nonporous duct (Da ! 1) and the results reported by Syrjälä
(1996) are given in Table II for different aspect ratios and power-law indices. It appears
from Table II that the agreement is very good for n ¼ 1 and 1.5, while the difference is
not significant for n ¼ 0.5, the relative error being less than 1.3 percent.

n 0.5 1 1.5

Correlation (22) 5.7217 14.227 34.82
Present study 6.0092 14.203 33.24

Table I.
Comparison of fRe results
with Hartnett and Kostic

(1989)

n
r 0.1 0.2 0.5 1

Present study 7.1043 5.9806 4.4065 3.9575
0.5

Syrjälä (1996) 7.1066 5.9789 4.3979 3.9066
Present study 6.7924 5.7390 4.1235 3.6099

1
Syrjälä (1996) 6.7850 5.7377 4.1233 3.6080
Present study 6.6373 5.6357 4.0272 3.4879

1.5
Syrjälä (1996) 6.6510 5.6510 4.0387 3.4938

Table II.
Comparison of Nu results

with Syrjälä (1996)

Convection in a
3D flow of a non-
Newtonian fluid

877



Results and discussion
Hydrodynamic results are presented in terms of velocity profiles and dimensionless
pressure drop, while heat transfer results are given in terms of peripherally averaged
Nusselt number and temperature field. The effect of the porous layer thickness,
varying from 0 to 100 percent of the gap, is analyzed. The effect of the permeability is
taken into account by varying the Darcy number over a wide range. The rheological
aspect is considered by taking different values of the power-law index. The following
results are presented for the case where the inertia effects are neglected.

Hydrodynamic results
The use of a porous medium as a technique for heat transfer enhancement results in
a penalty due to the increased pressure drop. This is an important factor to be
considered, because in industrial applications, this added pressure drop is the price to
be paid the heat transfer enhancement by using a porous matter.

The variation of the dimensionless f Re pressure drop in duct is shown in Figure 2,
which shows the combined effects of the porous layer thickness and the power-law index n
on the axial pressure. It is shown that the pressure drop increases significantly with the
increase of n in the Darcy regime. Indeed, the obtained pressure drop, with shear-thinning
fluids and a completely porous duct, is lower than that obtained with a shear-thickening
fluid approximately of 1,000 times with an entirely porous duct and approximately of 10
times with a duct filled in 80 percent of the porous material. AsDa increases, the difference
in the pressure loss exhibited by the considered fluids, for fixed e, diminishes until to reach
the non-porous case. This result is in agreement with that reported by Hartnett and Kostic
(1989). Besides, for relatively weak thicknesses, as shown in Figure 2(a), the pressure
loss remains practically constant as long as Da is approximately lower than 1024 for
shear-thinning fluids and Da lower than 1023 for shear-thickening fluids, thus the
variations of the porous material permeability does not affect the pressure loss. This
phenomenon is explained by the fact that for these Da values, the fluid does not virtually
cross the duct. For thicker porous layers, it is interesting to note, as shown in Figure 2(b),
that the pressure drop for the 90 percent-porous-material-filled duct is the same as
the one for the fully porous duct above a critical value of Da ø 1024. For the 80
percent-porous-material-filled duct, the critical value Da increases 1023.

Figure 3 shows how the flow field is altered when a porous material fills the duct.
The geometry considered has two symmetry planes, so only the velocity profile about
Y ¼ 0.5 is analyzed here. As it is shown in Figure 3(a), at low permeabilities, virtually
all the flow rate is concentrated in the center of the duct characterized by very a high
value of the centerline velocity because of the high resistance encountered by the flow
due to the porous insert. When Da increases, more flow rate penetrates the porous
layer, improving the convective activity in the porous layer. Similar observations are
made with a porous layer thickness equal to 0.2 from Figure 3(b). However, the
variations of the velocity at the interface are less pronounced.

Figure 4 shows the effects of the porous layer thickness on the velocity profile for a
fixed permeability. As long as the porous layer occupies less than 60 percent of the
duct section, the velocity profiles are flattened, which basically corresponds to the
Darcian regime. It is also showed that the velocity gradient decrease when the porous
material thickness decreases from e ¼ 0.5 to 0.4. Such flow behavior will have a
significant impact on heat transfer as will be shown later.
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Figure 2.
Variations of the

dimensionless pressure
drop with the Darcy

number and the porous
layer thickness; (a) e ¼ 0.1,
0.2, 0.3; (b) e ¼ 0.4, 0.45, 0.5
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Heat transfer results
Figure 5(a) and (b) show the evolution of Nu against the Darcy number Da for different
values of the porous layer thickness, and for n ¼ 0.5 and 1.5. It appears that the
thermal behavior shown from these graphs is globally the same for shear-thinning and
shear-thickening-fluids. Let’s analyze Figure 5(a), which concerns shear-thinning fluids
(n ¼ 0.5). Three different behaviors of Nu are shown in this graph. For a porous layer

Figure 3.
Effects of Darcy number
on the velocity profiles at
the plane of symmetry for
n ¼ 0.5; (a) e ¼ 0.4;
(b) e ¼ 0.2
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thickness of 0.1, 0.2 and 0.3, the peripherally averaged Nusselt number increases with
permeability until it reaches an asymptotic value, which corresponds to the non-porous
case. Moreover, for low permeabilities, until approximately Da ¼ 1024, the increase of
the porous layer thickness leads to heat transfer fall. This is due, first to the increase of
the hydrodynamic resistance to the flow induced by the presence of the porous medium
which makes that the majority of the flow rate passes through the non-porous region,
and second, to the augmentation of the thermal resistance which makes the heat flux
decrease. Thus, it can be concluded that the heat transfer occurs only through
conduction for the first case.

The second behavior is the one observed for thicknesses of the porous layer from to
0.4 to 0.45. For this case, the Nu increases when the porous layer permeability increases
up to a critical value (Da ¼ 1023 for e ¼ 0.45) beyond which, Nu decreases. Unlike the
precedent case, comparatively to the non-porous duct, heat transfer improvement can
be obtained from a critical value of Da. This enhancement is better for thicker layers.

When the porous layer fills completely the duct (e ¼ 0.5), a heat transfer
enhancement is obtained for any permeability; although, this enhancement decreases
with the increase of Da. This behavior can be explained by the fact that at low
permeabilities, very high velocity gradients occur near the duct wall. This results in
strong convective effects, and leads to an increase of heat transfer. As long as the
Darcy number is increased, the velocity gradients at the duct walls decrease, which
results in the boundary layer thickness increase, and thus a Nu decrease.

In addition, one cannote some critical points beyond which the Nu evolution in
terms of Da is reversed. For example, at Da ¼ 5 £ 1024, heat transfer obtained with a
porous layer of thickness about 0.4 becomes greater than heat transfer obtained with a
0.3 thickness porous layer. The physical explanation is that, at this permeability, the
velocity gradient created in the vicinity of the duct walls is more important with a
porous insert thickness equal to 0.4 according to Figure 4. For shear-thickening fluids
similar observations are noted.

Figure 4.
Effects of porous layer
thickness on centerline

velocity for a fixed
permeability
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Figure 5.
Variation of the
peripherally averaged
Nusselt number against
Da for different porous
layer thicknesses;
(a) n ¼ 0.5; (b) n ¼ 1.5
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The effect of the power-law index on the heat transfer is shown in Figure 6. When the
porous substrate fills to 40 percent of the duct section, the rheological properties of the
fluid influence slightly the heat transfer, except at high permeability where
shear-thickening fluids exhibit the highest Nusselt number. For a porous layer
thickness equal to 0.4, Nu remains virtually constant in the Darcian regime, while as
the Darcy number increases and the power-law index is increased, Nu increases, with a
relatively constant difference, up to a critical Da value for which heat transfer is
maximal; above this value the difference in Nu diminishes. While shear-thickening
fluids exhibit the highest Nu above another critical Da, approximately equal to 1022.

Variations of the Nusselt number as a function of the porous layer thickness are
shown in Figure 7. The conjugated effects of the power-law index and the permeability
are also analyzed for a low conductivity porous insert (Rk ¼ 1). For a given Da, the
Nusselt number decreases with the increase of the porous layer thickness, until a
critical value, above which Nu increases. Similar results were reported by Chikh et al.
(1995a) for a partially annular porous duct. However, in their results, no heat transfer
enhancement was obtained, while in this study, a heat transfer improvement is
realized, in spite of the low conductivity, beyond a critical thickness which is
depending on the permeability and the power-law index. The impact on heat transfer
enhancement of the power-law index is more clearly illustrated in this figure. Indeed,
when Da ¼ 1021, shear-thinning fluids exhibit a more important heat transfer than
shear-thickening fluids whatever the porous layer thickness. As Da decreases, a critical
thickness appears, for which both shear-thinning and shear-thickening fluids give the
same heat transfer rate. Below this value, the obtained heat transfer is better with
shear-thinning fluids while above this value the inverse behavior is observed.

The effects of porous material conductivity on heat transfer are analyzed. Several
values are considered, from 1 to 100, as shown in Figure 8 for shear-thinning fluids.
Beyond a certain thermal conductivity ratio, which depends on the permeability, heat
transfer enhancement can be achieved significantly. However, at Da ¼ 1024 using

Figure 6.
Effects of the power-law

index on the heat transfer
versus Da for different

thicknesses of the porous
layer
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more conductive porous material does not improve the heat transfer as long as the
thickness is less than 0.4. As it was explained previously, this is caused by the fact that
not enough fluid crosses the porous layer. For low permeability, when the porous layer
occupies close to 100 percent of the duct section, the Nu becomes higher, in accordance
with the results shown in Figure 4, where high velocity gradients appear at these
thicknesses.

The variation of the peripherally averaged Nusselt number against the conductivity
ratio is shown in Figure 9, which displays the combined effects of the power-law index

Figure 7.
Variations of Nusselt
number as a function of
the porous layer thickness

Figure 8.
The effects of the porous
material conductivity and
e on heat transfer
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and the permeability. Figure 9(a) shows that heat transfer enhancement is obtained,
compared to the non-porous case, beyond a certain value of the thermal conductivity
ratio. This enhancement is significant at high permeability for both for
shear-thickening and shear-thinning fluids. When the permeability of the porous
substrate is low, the heat transfer enhancement is weak for shear-thinning fluids, while
for shear-thickening fluids, practically no enhancement is obtained whatever the Rk

Figure 9.
The variations of the

peripherally averaged
Nusselt number against

the conductivity ratio;
(a) e ¼ 0.2; (b) e ¼ 0.4

Convection in a
3D flow of a non-
Newtonian fluid

885



value. At low permeability, both shear-thinning and shear-thickening exhibit nearly
the same Nu, while at high permeability a slight difference is observed. In the case
where the porous material fills the duct to 80 percent, as it is shown in Figure 9(b), heat
transfer enhancement is obtained with shear thinning and shear-thickening for any Rk

value, at high permeability while at low permeability, enhancement is realized beyond
a critical Rk. Contrary to the case where the porous layer fills to 40 percent the duct, the
Nu is unaffected by the nature of the fluid at high permeability, while shear-thinning
fluids exhibit the highest Nu at low Da. For the both thicknesses considered, at
Da ¼ 1024, shear-thinning fluids allow to obtain heat transfer enhancement with less
conductive porous matter.

The variations of the averaged Nusselt number with the power law index are
plotted in Figure 10 for two thicknesses of the porous layer and two Darcy numbers.
As it is shown, Nu remains virtually constant, except when e ¼ 0.4 and Da ¼ 1024.
For these conditions, as the power-law index increases, Nu increases. At high
permeability, the heat transfer exhibits the highest value when the porous layer is
thicker. At low permeability, a critical value of n appears, at which both thicknesses
lead to the same heat transfer. Before this value, Nu is lowest when e ¼ 0.4 and beyond
this value, the inverse behavior is observed.

Conclusion
A numerical study of laminar forced convection in a partially or fully porous square
duct saturated with a non-Newtonian power-law fluid was carried out. The flow was
assumed to be steady, hydrodynamically and thermally developed. The flow and heat
transfer problems were solved numerically using the finite volume method. The effects
of the Darcy number, the power-law index, and the thickness of the porous layer on
both the flow and heat transfer in the duct were investigated. Among the most
important results, it was highlighted that a heat transfer improvement is obtained
when the channel is entirely porous, and this enhancement is maximized at low

Figure 10.
Variations of Nu as a
function of the power-law
index
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permeability. However, a supplementary pumping effort is necessary, due to the added
pressure drop caused by the porous medium. On other hand, depending on the working
conditions, heat transfer enhancement could be obtained by filling partially the duct
with a porous insert, even if the conductivity ratio is equal to 1. This configuration
produces less additional pressure loss. It was also reported that there is a critical
thickness depending on the Darcy number, for which the averaged Nusselt number is
minimized. Thus, under these specific conditions, according to the required objectives,
the porous insert can be used either for insulation or for heat transfer enhancement. As
it was expected the porous material thermal conductivity has a strong effect on the
heat transfer. It was shown that at high permeability the heat transfer enhancement
increases with an increasing conductivity ratio and the porous layer thickness. While
at low permeability, using more conductive porous matter does not improve further the
heat transfer enhancement as long as the porous layer thickness is less than a certain
critical value. Concerning the impact of the rheological properties of the fluids on the
heat transfer, it was demonstrated that both shear-thinning and shear-thickening
fluids allow obtaining the highest Nusselt number depending on the properties of the
porous insert. The added pressure drop was found to be significantly more important
with shear-thickening fluids in comparison to the Newtonian and the shear-thinning
fluids either when the porous matter fills partially or entirely the duct. One can
conclude that favorable and unfavorable conditions for heat transfer enhancement
exist according to the properties, the thickness of the porous insert and the power-law
index.

This study appears to be the first devoted to forced convection in a porous square
duct saturated with a power-law fluid. Clearly, further studies are needed to investigate
the influence of others parameters such as aspect ratio, the non-Darcian effects, thermal
dispersion, etc. . . . Also, in light of the results obtained supplementary developments
are required to determine the optimum conditions for maximizing the heat transfer
enhancement and to maintain the pressure drop to acceptable values.
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